NORTHWESTERN UNIVERSITY

Ryne Estabrook, Ph.D¹; Andrea M. Piccinin, Ph.D²; Julia K. Wolff, Ph.D³; Boo Johansson, Ph.D⁴; Dorly J.H. Deeg, Ph.D⁵; Avron Spiro III, Ph.D⁶; Penny Edwards⁷; Scott M. Hofer, Ph.D³; Daniel K. Mroczek, Ph.D¹ Northwestern University¹; University of Victoria²; The German Centre of Amsterdam⁵; VA Boston Healthcare System & Boston University⁶; Flinders University⁷

Life Satisfaction Trajectories

Introduction

- Early cross-sectional research showed contradictory findings for the relationship between age and life satisfaction (LS). Some studies showed stability while others showed a positive correlation and negative correlations with age (Diener, & Suh, 1998; Prenda, & Lachman, 2001; Freund, & Baltes, 1998).
- Later cross-sectional work suggested Life Satisfaction follows a U-shaped curve, with its lowest point in midlife (~47yrs) and increasing into later life (~70yrs) (Blanchflower, & Oswald, 2008).
- Longitudinal work has shown both increases and stability in LS through middle age with declines in late life. Other studies, however, show declines in to early adulthood, followed by an increase into late adulthood before dropping off in late-life (mid-70s) (Mroczek, & Spiro, 2005; Baird, Lucas, & Donellan, 2010).
- Cross sectional studies confound age-related change with cohort differences, while longitudinal work may be conflated by instrumentation effects resulting from repeated measures and socio-historical contextual influences. **Nethods**

Coordinated Analysis and Reproducibility

- A coordinated analysis is a form on Integrative Data Analysis (IDA) (Hofer & Piccinin, 2009). Analyses are carried out in each individual dataset, using identical models and code, yielding a comparable set of results. • Unlike a Pooled Analysis IDA (Curran & Hussong, 2009; example: Jokela et al., 2013), a Coordinated Analysis
- allows differences over measures, samples, and study designs.
- External validity requires similar results over different measures, samples, times, contexts, historical periods, etc. (Brunswik, 1956; Campbell & Stanley, 1966; Cook & Campbell, 1975; Hultsch & Hickey, 1977).

Australia Netherlands UK Germany Sweden

Acronym	Study	Origin	Sample	Life Satisfaction		Follow-up Age		n
			Ν	Measure	Range	Mean	Range	Waves
ALSA	Australian Longitudinal Study of Ageing	Australia	2062	1 item	0.9 - 4.3	80	65 - 106	4
DEAS	German Ageing Study	Germany	16667	SWLS	1 - 5	63	40 - 95	5
GSOEP	German Socio-Economic Panel		78747	1-item	0 - 10	46	14 - 105	32
LASA	Longitudinal Aging Study Amsterdam	Netherlands	3683	2-item	1 - 5	71	55 - 101	7
OCTO	Origins of Variance in the Oldest-Old: Octogenarian Twins	Sweden	487	LSI-Z	1 - 4.2	85	79 - 98	4
SATSA	Swedish Adoption/Twin Study of Aging		2173	LSI-Z	1 - 5	64	26 - 103	7
ELSA	English Longitudinal Study of Ageing	UK	14845	SWLS	1 - 7	66	17 - 99	6
BPHS	British Household Panel Study		26641	1-item	1 - 7	45	15 - 100	12
HRS	Health and Retirement Study		21150	SWLS	1 - 7	68	18 - 104	5
MIDUS	Midlife in the United States National Survey	USA	6455	5-Item	0 - 10	53	20 - 93	3
NAS	Veterans Affairs - Normative Aging Study		972	LSI-A	0 - 1	70	45 - 91	11
			1527	SWLS	1 - 7	75	57 - 91	6
		Total N =	175409		Average	66	38 - 99	9

Figure 1. Box plot and Violin Plot depicting the Distribution of Life Satisfaction Scores **Across Studies.** Note. All scores were rescaled to have a range between 0 and 1.

Trajectories of Life Satisfaction in 11 Longitudinal Samples: A Coordinated Integrative Data Analysis Emily D. Bastarache, B.S.¹;

- HRS NAS (LSI) SATSA

across studies

Figure 3. Examples of the Individual Trajectories of Life Satisfaction used for Estimation of the Overall Fixed Effect of Age

Satisfaction due to Between-Person versus Within-Person Differences Across Studies.

	Parse out instrumentation, cohort, and contextual effects within studies by comparing cross-sectional and longitudinal analyses (Baird Lucas Donellan 2010)
only. Inting	Assess Factorial Invariance across measurement occasions
	Model higher order polynomial trajectories of LS in studies with sufficient measurement occasions
	Utilize alternative Time-Metrics (Time-in-Study, Time-to- Death) and comparing results
łS,	 Investigate sources of study-level variation accounting for heterogeneity in the effect sizes. (Measure-related, Country-level, Sample- composition)
nd ectory. ely	 Investigate sources of individual-level variation accounting for heterogeneity in slopes across individuals. Slopes as predictors of health outcomes and mortality risk

Presented at the Association for Research in Personality Conference, June 2017, Sacramento, CA